数码之家

 找回密码
 立即注册

QQ登录

只需一步,快速开始

微信登录

微信扫一扫,快速登录

搜索
查看: 41|回复: 0

[科技] 苹果创新“清单法”:用 AI 大模型当老师,教小模型执行复杂指令

[复制链接]
发表于 昨天 20:24 | 显示全部楼层 |阅读模式

爱科技、爱创意、爱折腾、爱极致,我们都是技术控

您需要 登录 才可以下载或查看,没有账号?立即注册 微信登录

x
科技媒体 9to5Mac 昨日(8 月 25 日)发布博文,报道称苹果研究人员在最新论文中提出“基于清单反馈的强化学习”(RLCF)方法,用任务清单替代传统人类点赞 / 点踩评分,显著提升大语言模型(LLMs)执行复杂指令能力。
IT之家注:RLCF 的全称为 Reinforcement Learning from Checklist Feedback,不同于传统的“人类反馈强化学习”(RLHF)依赖人工点赞 / 点踩,RLCF 为每条用户指令生成具体的检查清单,并按 0-100 分逐项评分,用以指导模型优化。
研究团队在强指令跟随模型 Qwen2.5-7B-Instruct 上测试该方法,涵盖五个常用评测基准。结果显示,RLCF 是唯一在全部测试中均取得提升的方案:
  • FollowBench 硬性满意率提升 4 个百分点
  • InFoBench 提高 6 点
  • Arena-Hard 胜率增加 3 点
  • 某些任务最高提升达 8.2%。
这表明清单反馈在复杂、多步骤需求的执行中效果显著。
清单的生成过程也颇具特色。团队利用更大规模的 Qwen2.5-72B-Instruct 模型,结合既有研究方法,为 13 万条指令生成了“WildChecklists”数据集。清单内容为明确的二元判断项,例如“是否翻译成西班牙语?”。随后,大模型对候选回答逐项打分,综合加权后作为小模型的训练奖励信号。
苹果研究者也坦言该方法存在局限。首先,它依赖更强模型作为评判者,这在资源受限场景下未必可行。其次,RLCF 专注于提升复杂指令执行能力,并非设计用于安全对齐,因此不能替代安全性评估与调优。对于其他任务类型,该方法的适用性仍需进一步验证。


您需要登录后才可以回帖 登录 | 立即注册 微信登录

本版积分规则

APP|手机版|小黑屋|关于我们|联系我们|法律条款|技术知识分享平台

闽公网安备35020502000485号

闽ICP备2021002735号-2

GMT+8, 2025-8-27 05:30 , Processed in 0.452401 second(s), 8 queries , Redis On.

Powered by Discuz!

© 2006-2025 MyDigit.Net

快速回复 返回顶部 返回列表